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SUMMARY 
In this paper we describe a space-time finite element method, with elements aligned along the computed 
characteristics in space-time, for the computation of incompressible free surface flows in three dimensions. 
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1. INTRODUCTION 

Lagrangian fluid flow computations (or, for that matter, large-deformation analyses) have traditionally 
been performed using time differencing along computed characteristics. ’,* This idea is somewhat 
conceptually unclear: how are we to compute the spatial differential operators? On what domain? And 
on what domain should the integration be performed? And what about higher-order time-stepping 
schemes? We do not suggest that these questions cannot be satisfactorily answered in the classical 
framework, but if a space-time finite element method is used, they are answered already at the outset! 
This conceptual elegance of the space-time approach leads to both simpler and more flexible computer 
implementations. 

The numerical examples herein are restricted to Lagrangian computations, but the methodology is 
directly applicable to the case of an arbitrary Lagrangian-Eulerian (ALE) description. The ‘reference’ 
domain is then identical with the domain covered by the mesh, which in one stroke discards the 
notational plethora of standard ALE algorithms. The implementation is straightforward, with the 
Jacobian of transformation from the spatial domain to the material or referential domain being identical 
to the Jacobian of elemental transformation, standard in finite element analysis. 

This paper is an extension of previous work by the author3 concerning two-dimensional free surface 
problems. Similar ideas have also been proposed independently by Tezduyar et ~ 1 . ~  For an early 
example of the use of space-time elements for free surface flows, see Reference 5. An alternative 
approach in the case of systems of conservation laws is given in Reference 6. 

2. FINITE ELEMENT FORMULATION 

We will consider the Navier-Stokes (NS) equations for an incompressible fluid in a variable domain 
Q ( t )  c R3, 0 5 t 5 T ,  with boundary r(t) consisting of the disjoint parts r,(t) (where the velocity is 
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prescribed) and r,(t) (where the surface traction is known). In order to simplify the statement of the 
equations, we introduce the four-dimensional space-time domain 

$3 = u {(x, t )  : x E Q ( t ) } ,  
o<r<r 

where x = ( x I ,  x2 ,  xj), with boundary 8 9  = d9, ,  u Z9,, where B, ,  and 89, are the parts of 8 9  
arising from r,, and r, respectively. 

With this notation the NS equations may be written as 

au  
at 
-+ u * V u  - div u = f in 9, 

div u = 0 in $2, 

u = g  ond$3", 
u - n = h  ond$3=, 

u = UO inQ(0). 

Here u is the velocity in a spatial co-ordinate system x, f is the body force, h is a prescribed boundary 
tension and g is a prescribed velocity. Furthermore, n is the outward-pointing normal to r , ( t )  and u 
denotes the stress tensor 

u = -PI + 2PE(U), 

where p is the kinematic pressure, p is the kinematic viscosity, I is the identity tensor and E is the 
symmetrical part of the velocity gradient, with components 

E . .  - -  1 (-+-). du1 auj 
y -  2 ax, axi 

The motion of the free boundary r,(t) is unknown in advance and thus the geometry of the space- 
time domain $2 is a part of the problem which must be considered in the discretization of (1). For 
clarity we will use the symbols &(t) and r:(t) when refemng to the computed approximation of the 
exact domain. 

We will describe the proposed finite element method loosely; a more precise definition is given in 
Reference 3. Consider first a triangulation of Qh(t,,), which we choose as being defined by linear 
('constant strain') tetrahedra. We extend the spatial mesh into a s ace time mesh by considering tensor 
product elements on a reference space-time 'slab' S, = Qh(t,,) x (t,,, t ,  + ,). The temporal 
approximation is continuous on the interval (t,,, t,, + 1) and discontinuous between the time intervals. 
Here we choose constant approximation on each reference slab, which leads to a backward Euler-type 
m e t h ~ d . ~  

Next the space-time elements are mapped from the reference slab to the deforming physical space- 
time domain using a bilinear map 

s - 

(x, 1) = Fn(E + (7 - t n ) ~ [ * ( E ) ,  T), 

where (5, z) refers to the reference domain, (x, t )  refers to the deforming domain and u* defines the 
geometry of the space-time domain. In particular we may set u* equal to our computed velocity field, 
in which case we recover a Stokes problem on a deforming domain, see below. 

Since we use a constant temporal approximation on the reference slab, while Fn(& z) is linear in z, 
this approach amounts to using elements that are superparametric in time (i.e. the polynomial 
describing the geometry of the elements is of higher degree than the one approximating the solution). 
This means that the boundaries of $3 will be approximated by straight segments over the intervals 
Ifl = (tfl, tn + I ) .  
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In the following we will denote by S,, the transformed counterpart of 3, and by 8s: the transformed 

The space-time finite element method can now be formulated as follows: for n = 0, 2, . . . , N find 
counterpart of r: x I,,. 

h (u;+ 1 3  P,+ 1 )  3 (Uh3 Ph) IS" such that IS" [ (% + uf: + - Vuf: + - v - pf: + div v + 2p&( uf: + : E(v)] d!2 dt 

av - vv + Vq)]  dR dt + J, h - v d r  dt (3) 

for all possible mesh functions v and q. In (3), 61 = Clh/(l + Iu;+,I) is a stabilizing 'upwind' 
parameter, 62 = C2h is a stabilizing penalty-like term (cf. augmented Lagrangian methods7) and 
63 = C3 is a penalty term enforcing the boundary condition; here we use positive constants C1=l,  
C2 zz 1 and C3 >> 1. We also use the notation u$ = Uo. 

We note in particular the following. 

(1) The method (3) is based on a stabilizing least squares perturbation of the test functions, so that 
we in fact test with 

av 
dt 

v = v + 6 (- + Uh . VV + vq) 
and 

ij = q + 8 2  div v. 

(ii) The Neumann boundary condition u - n = h is satisfied weakly in the usual sense of the FEM. 
As noted in previous work,3 this seems insufficient to ensure fulfilment of the boundary 
conditions with the present method (at least for inviscid flows; there is an ambiguity in the 
weak fulfilment of the pressure boundary conditions due to the perturbations). Hence we add a 
penalty term on the Neumann boundary. 

(iii) If the computed velocity uk+ is equal to the nodal velocity u*, we are in fact solving a Stokes 
problem (see below) and the definition of S1 is no longer In such a case the correct 
choice is S1 = Clh2. 

(iv) The spatial integral 

is to be computed on the bottom of slab S,,. Since the top of slab S,, - does not necessarily 
have to match the bottom of slab S,,, we may return to the original grid at each time step. Then 
the spatial integral defines a built-in L2-projection, and with u* = uk+ the method resembles 
the characteristic Galerkin methods." However, one important difference is that here all 
integrals are defined on the same mesh, while the characteristic Galerkin method typically 
treats the convective term separately. 
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In the special case of Stokesian flow we may formulate a simpler method, introduced by Brezzi and 
Pitkaranta," which is conceptually different but closely related to (3). They introduced a relaxation of 
the divergence zero condition by letting 

div u = h2V2p, 

which Hughes et aL9 later put in the present framework of a least squares stbilization of the pressure. 
Since there is no need to stabilize the velocities in Lagrangian flow analysis and since we use the 
simplest linear spatial element, we may use this simpler approach, which gives us the following system 
of equations to consider (dropping the additional boundary terms): 

(uf: + , - uf:) - v dQ + lSn ( 2 p ~  (uf: + I ) : E ( V )  - pf: + div v) dQ dt 
( 4 4  

+ ISn h div u:+ I div v d!2 dt = f * v dQ dt 
IS" 

and 

for all mesh hnctions q and v. 

3. LAGRANGIAN COMPUTATIONS BY SPACE-TIME TILT 

In Eulerian flow computations the unknown quantities (u, p )  are computed at fixed points in a spatial 
co-ordinate frame x as in (1). In contrast, one may use the Lagrangian form of the equations, where the 
unknown quantities are related to the particles P (labelled by their positions X in the spatial frame at 
time t = 0),  moving through the spatial co-ordinate system with velocity d(X, t). From a Lagrangian 
point of view the particles follow paths x = x(X, t) in the spatial frame, paths found by solving the 
system of equations 

dX 
- at = u(x, t),  x(X, 0) = x. 

By the chain rule of calculus one may express the acceleration of a particle in the spatial frame by 

aiqx, t )  - &(x, t )  - 

i at at 
consequently, by (5 ) ,  

Thus the convective derivative is not present in the Lagrangian formulation, which leads to simpler and 
stabler numerical approximations. 

If we set the nodal velocity u* equal to the computed solution ah during at time interval Z,,, it is 
obvious that the path of a particle will be approximated by the motion of the mesh as expressed by the 
transformation (2). Indeed, since by definition uh(x, t)  = dh(gl t) when x obeys (2), we have with the 
present superparametric-in-time formulation that 

ax 
at 
- = Uh(X, t ) ,  
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so that in fact plays the role of X in (5) and by ( 6 )  the convective derivative will vanish automatically 
in the discrete scheme. 

As an example, consider a one-dimensional element, linear in space and constant in time on the 
undeformed element. For the mapping to the physical element we use a superparametric-in-time 
element. The basis functions cp and mapping functions + are given by 

The Jacobian of the mapping is given by 

rdx d t i  

which in our case becomes (see Figure 1) 

[ (XI - x2 + x3 - x4). - x1 + x2 + x3 - x4 
0 1  

4 

(Xi -x2 +x3 -x4)5 - X I  -x2 +x3 +x4 
' J =  i 4 - knl 2 

where k, = tn + - t,. Note in particular the zero in the upper right comer of J. It is given by the 
symmetry of the spatial derivatives with respect to opposing nodes, together with the fact that the 
element has straight horizontal sides on each time level. This quality generalizes to the 
multidimensional case and thus the Jacobian of the space-time element is no more difficult to 
invert than the Jacobian of the corresponding spatial element: first we solve for the spatial derivatives 
of the basis functions, then the temporal derivatives are given as a linear combination of the spatial 
derivatives. 

With the computed velocity as nodal velocity we have that x4 = x1 + k,,u:, x3 = x2 + knu;, and thus 

T 1 

Figure 1. Mapping from the reference element to the physical element 
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kn a(P 1 _ _  
4 [ $1 =& [ kn[u! +ui + (u: -.!)(I 

8 

and it follows that 

aq; h a q i  aqi 1 8% - - + u  -=-+- [(1-()u:+(1+4)Uh] - = o  
ax at 2 ax at 

as expected. A corresponding effect cannot be achieved with an isoparametric mapping. 

4. SOLUTION ALGORITHM 

4.1. The discrete system 

If the space-time mesh is aligned with the characteristics, the Navier-Stokes problem in effect is 
reduced to a Stokes problem at each time step. This fact may be used to define a general solution 
algorithm. We may write (4) in matrix form as 

Here, denoting by Q; the FE approximation for the velocity and by (pi the FE approximation for the 
pressure, 

A, = IR Q ~ ( x ,  t,,) * Q ~ ( x ,  t,,) dR + 2p&(qj ) :  E ( Q ~ )  di2 dt + 
B.. rl - - - jsn qj div 'pi di2 dt, Cv = jsn h2Vqj * Vq, d!2 dt, 

F; = J f Q; di2 dt + J .I(., t n )  * Q;(x, tn) di2. 

Note the presence of C corresponding to the slight compressibility. It is easy to see how this matrix 
stabilizes the pressure: eliminating the velocities, we have to invert BA-'BT + C to solve for the 
pressure. Since C is positive definite (modulo the 'rigid body' mode which is eliminated, if necessary 
by artificially prescribing some node), there is in fact no need for BA-'BT to be invertible 
(corresponding to the fulfilment of the BabuSka-Brezzi condition). 

S" R 

4.2. Solution method 

For the solution of the time-dependent Stokes problem we use an Uzawa algorithm with a 
preconditioned conjugate gradient method applied to the pressure e q ~ a t i o n . ' ~ ' ~ , ' ~  The system (10) may 
be written as 

( B A - ~ B ~  + c ) p  = BA-IF,  (1  la) 

(1 1b) u = A-I (F - BTp). 

The method consists of the conjugate gradient method applied to (1 la), with the velocity repeatedly 
updated using (1 lb). For completeness we give the algorithm. 
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The question is how to select the preconditioning matrix S. The natural choice for S was given by 
Cahouet and Chabard12 as a linear combination of a discretized Laplacian and the mass matrix, 
depending on the appearance of the matrix A (see also Reference 13 and, for a related method, 
Reference 14). In this way one obtains a preconditioner which is easy to construct and which is 
spectrally equivalent to the pressure matrix BA-'BT. Since C is small compared with the pressure 
matrix (its eigenvalues ranging between O(h2) and O( I)), we expect, and indeed find in practice, that 
the pressure equation converges rapidly with a good preconditioner for the pressure matrix. 

A drawback of Uzawa-type schemes is that the velocity matrix A must be inverted in each loop. The 
inversion has to be accurate in order for the method to converge,14 and if A is ill-conditioned, this may 
make the method expensive. In our application, however, we assume that the viscosity is small and thus 
A is close to the mass matrix which is easy to invert (this is not quite true, since we also augment A 
with a penalty term which makes things a little less perfect). With this A it also follows that the natural 
choice for S is a discrete Laplacian. In the numerical examples presented herein, we use a direct solver 
for the inversion of S, with back substitution at each conjugate gradient step. We update the geometry 
three times at each time step, which also means updating the system matrix. However, we do not 
update the preconditioning matrix: the geometry does not change enough to make a difference. One 
could in principle use the same preconditioning matrix as long as the topology of the mesh is not 
changed and just check whether the effect of preconditioning is deteriorating, but here we update s 
when changing time step. 

A faster approach to the inversion of the discrete Laplacian is of course to use multigrid acceleration 
of an appropriate iterative method. Note, however, that for Lagrangian flows this would mean the use 
of a more complicated non-nested multigrid implementation, since the nodes asociated with the finest 
level can move independently of the nodes on the coarser levels. 
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5. NUMERICAL EXAMPLES 

5.1. Collapsing liquid column 

A column of inviscid liquid, originally contained in a cylinder of radius 1 and height 2, collapses 
under the influence of gravity, modelled by setting f = (0, 0, -1). The initial domain is shown in 
Figure 2. We use a constant time step k,, = 0.1. The domain and central cut-outs showing velocity and 
pressure isolines are given in Figures 3-6 after 5, 10, 15 and 20 time steps. The corresponding 
maximum velocity and pressure were (urnax, pmax) = (0.87, 0-67), (1 '4, 1 * l), (1 '6, 1 ' 5 )  and (1 '7, 1 .O) 
respectively. The mesh consists of 6823 elements and there are 1417 nodes. Note that the pictures are 
not shown on the same scale. 

5.2. Splashing wave 

A disc of inviscid liquid, 4 + 4 5 1 and 0 5 x3 5 0.25 is furnished with a cosine hump according 
to 

x3 = +{ 1 + i [ l  + cos(nR)]}, 

where R = (x: + x;)''~ Initially the fluid is at rest. Suddenly it collapses under the influence of gravity 
(modelled as in the previous example). We show a side view of the original mesh in Figure 7. It 
consists of 8887 elements and has 1965 nodes. In Figure 8 we show the velocity and a cut-out (the 
(x,, x3) plane at x2 = 0) of the pressure at time t = 0.25. Finally we show a sequence of velocity cut- 
outs after 15, 25, 30,40, 45 and 50 time steps of size k,, = 0.05 in Figure 9, from top to bottom. At the 
final time the mesh has collapsed owing to extreme deformation. 

6. CONCLUDING REMARKS 

The space-time finite element method presented herein is very simple to implement and use, since 
nothing has to be worked out analytically; all transformations between material, reference and spatial 
domains are performed using standard superparametric finite element mappings from the parent 

Figure 2. Initial domain for collapsing column 
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Figure 3. Column at time t = 0.5 

Figure 4. Column at time t = 1.0 
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_ , -  

Figure 5 .  Column at time t = 1.5 

Figure 6. Column at time t = 2.0 
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Figure 7. Initial domain for splashing wave 

999 

Figure 8. Velocity and pressure cut-out at time t = 0.25 

element to the physical element on which the computations are performed. There is no problem if one 
wishes to increase the temporal accuracy: simply increase the polynomial order. Change one 
subroutine ! 

We emphasize the many different possibilities using this unifying space-time approach: for 
Lagrangian computations as herein; for arbitrary Lagrangian-Eulerian computations as in Reference 4; 
as a general approach to fast solution of convective problems;" for increasing the accuracy of the 
numerical solution of more general time-dependent problems6 
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Figure 9. Sequence of velocity cut-outs (time increases from top to bottom) 
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